Background
FloatingRocks-Canaries

The most recent eruption on the Canary Islands – at El Hierro in 2011 – produced spectacularly enigmatic white “floating rocks” that originated from the layers of oceanic sedimentary rock underneath the island. Despite being violently transported through the volcano, some of these rocks contain microscopic fossils of delicate single-celled marine organisms, making the survival of these fossils all the more extraordinary. A new study published in Scientific Reports, an open access journal of the Nature Publishing Group, by a team of scientists which includes Prof Valentin Troll and Dr Fiona Meade (formally of Trinity College Dublin), uses these fossil time-travellers to date the sedimentary layers beneath El Hierro and, in turn, shed new light on the long-standing puzzle about the origin of the Canary Islands.

The origin and life cycle of oceanic volcanoes, such as the Canary Islands, has long been a source of debate among natural scientists. There are two competing models for the origin of the Canaries – one in which ocean floor fractures control the location of volcanic activity, and another in which an anomalously hot plume of molten rock from the Earth’s mantle feeds island growth from below. A cornerstone of the debate concerns the validity of an age-progression along the island chain. A fixed mantle plume under the roughly eastwards moving African tectonic plate would cause the islands and the pre-volcanic ocean sediments underlying them to become progressively younger towards the westernmost island of El Hierro. The fracture model, in turn, would give rise to randomly distributed island ages.

Fossils and volcanoes are not usually compatible with each other, which is what makes these samples so special. The newly published study in Scientific Reports by a research group led by Prof. Valentin Troll from Uppsala University, Sweden, offers a unique perspective on the plume versus fracture model debate for the origin of the Canary Islands. The fossils are de facto witnesses of the pre-island environment. Researchers can now place constraints on the ages of the sedimentary strata present before island-building and, indeed, on the initiation of island-building itself. In combination with known sediment ages from the east of the archipelago, it is now clear that the oceanic sediments become younger towards the west of the island chain, thus verifying an age-progression among the islands. These findings are in strong agreement with the mantle plume model for the origin of the Canary Islands and thus contribute to our wider understanding of ocean island volcano genesis.

For more information please contact Prof. Valentin R. Troll, Chair in Petrology at Uppsala University, valentin.troll@geo.uu.se

Zaczek, K., Troll, V. R., Cachao, M., Ferreira, J., Deegan, F.M., Carracedo, J.C., Soler, V., Meade, F.C., Burchardt, S. 2015. Nannofossils in 2011 El Hierro eruptive products reinstate plume model for Canary Islands. Scientific Reports 5:7945. DOI 10.1038/srep07945.

This project was initiated by Prof. Valentin Troll (Uppsala University, Sweden), Dr. Mario Cachao (University of Lisbon, Portugal), and Prof. Juan Carlos Carracedo (University of Las Palmas de Gran Canaria, Spain) and forms part of the doctoral thesis of Kirsten Zaczek at Uppsala University. The research was supported by an international team of co-workers from institutions in Spain and Portugal and by the Royal Swedish Academy of Sciences (KVA), the Center for Natural Disaster Sciences (CNDS) at Uppsala University and through the Swedish Science Foundation (VR).

Mike Hinchey Lero

Lero – the Irish Software Research Centre (Lero) has been selected by the European Space Agency (ESA) for the implementation of a research programme worth €400,000. The 18 month programme, which will be led by Lero Director Prof. Mike Hinchey, will commence this month.

Lero will collaborate with chip manufacturer Cobham Gaisler AB of Gothenburg, Sweden on the software behind specialist microchips to be used in European space missions. The Cobham Gaisler  LEON radiation hardened microchip, which was developed in association with the European Space Agency, is designed to operate in harsh environments such as space.

Lero researchers based at the University of Limerick will work on a new back end for the Open Source LLVM compiler library to enable it to be used for the LEON chip family. This is designed to expand the toolset available to developers working on the flight software for future European space missions in order to boost reliability.

This is the third and largest contract awarded in recent years by the European Space Agency to Lero, which is backed by Science Foundation Ireland.

“We are honoured to be selected for this important work,” commented Prof Mike Hinchey, Director, Lero. “Software designed for space missions needs to be leading edge and highly reliable in view of the cost, distance and unforgiving environment involved.”

Before heading up Lero, Prof. Hinchey was Director of the Software Engineering Laboratory at NASA Goddard Space Flight Centre in Greenbelt, Maryland. He remains a consultant to NASA.

Lero (www.lero.ie) is a global leader in software engineering research. It combines the best in Irish software talent by bringing together researchers from Dublin City University, Dundalk Institute of Technology, NUI Galway, Trinity College Dublin, University College Cork, University College Dublin and University of Limerick. It is funded by Science Foundation Ireland as well as by contracts from Irish and international technology corporations.