Background
Space Enbio

Investment in 40 new projects to help transition high potential young talent to fully independent research leaders

Minister for Research and Innovation, Mr Seán Sherlock, T.D. has announced €23 million in new funding to help support 40 of Ireland’s most promising young research talent to become fully independent researchers. The funding which is being awarded by Science Foundation Ireland (SFI) will help ensure that Ireland’s most talented young researchers can be encouraged to remain in Ireland, while also helping to attract excellent young researchers from other countries to base themselves here.

Minister for Research and Innovation, Mr Seán Sherlock TD said:“Funding for researchers at the outset of their careers is an important element of the Government’s strategy for job creation in research and innovation under our Action Plan for Jobs. SFI’s funding schemes for early career researchers help ensure that excellent research with the potential for real economic and societal impact is properly supported in Ireland. Investment like this is important for Ireland’s developing international reputation for excellent research with impact. The 40 research projects being awarded by SFI today demonstrate the enormous talent and potential that exists among Ireland’s young researchers.”

The €23 million in funding delivered by the Department of Jobs, Enterprise and Innovation, through SFI’s Starting Investigator Research Grant (SIRG) and Career Development Award (CDA) Programmes will support researchers and post-graduate students working on projects in areas such as sustainable and renewable energy, cancer research, neurological disorders, immunology, microbiology, biotherapeutics and Wireless Networks.

Professor Mark Ferguson, Director General of SFI and Chief Scientific Adviser to the Government of Ireland, said:“Both of the programmes under which funding is being announced today will help promising young researchers to create and develop impactful careers here in Ireland and in turn enable the pursuit of scientific research that has potential economic and societal impact. These programmes are also an important factor in ensuring that Ireland can succeed in persuading top young scientific talent from abroad to base their research efforts here in Ireland.”

SFI’s Starting Investigator Research Grant (SIRG) provides support for excellent postdoctoral researchers who wish to take steps towards a fully independent research career, while the Career Development Award (CDA) aims to support early and mid-career researchers who already hold a salaried, independent research post and who are looking to expand their research activities. Both programmes aim to support the development of young researchers with the potential to become excellent, fully independent research leaders in their chosen fields.

The 40 research projects awarded funding today will be funded by SFI through 12 research bodies, as follows: Trinity College Dublin (5), National University of Ireland Galway (5), Royal College of Surgeons in Ireland (4), Dublin City University (4), University College Cork (4), University of Limerick (4), National University of Ireland Maynooth (3), University College Dublin (3), National Institute for Bioprocessing Research and Training (3), Teagasc (2), Tyndall National Institute (2) and Dublin Institute for Advanced Studies (1).

A further 12 projects were also deemed scientifically excellent by the International Review Panel and are on a reserve list to be funded by SFI, if budgets permit later in the year.

Examples of projects supported:

Orla O’Sullivan (Teagasc Food Research Centre, Cork) SIRG

Orla’s research focuses on microbial diversity in the gut. Microbial diversity is highest in a healthy gut and Orla’s research will investigate if it is possible to improve that diversity and in turn improve the overall health of individuals. The research will also examine whether alterations in diet and/or lifestyle can influence microbial diversity and function.  Orla’s ultimate goal is to inform the potential development of nutritional supplements that can help improve human health.

Stephen Dooley (University of Limerick) SIRG

Stephen’s research will focus on understanding ways that cleaner and more versatile energy sources can be developed from indigenous biomass resources, including plant matter.  His goal is to find ways that help ensure that Ireland imports less fossil energy by creating environmentally benign energy technologies, particularly for transportation. He hopes that his research can help achieve this by informing a deeper and predictive understanding of how indigenous biomass, in particular, can be harnessed.

Patrick Hayden (Dublin City University) SIRG

Patrick’s research will investigate techniques that could improve the quality of laser-powered high-precision measurement. High-precision measurements on the composition and uniformity of drugs are useful to the pharmaceutical industry to help perform quality control as drugs are developed and produced. One method to perform these measurements is by measuring light emitted from the surface of the drug when a laser pulse is focused on it. The process is known as laser-induced breakdown spectroscopy (LIBS) at short wavelengths and Patrick’s research aims to increase the efficiency of this process. The research could also have applications in other areas including archaeology and forensic science.

Aoife Morrin (Dublin City University) CDA

Aoife’s research aims to explore the potential for the analysis of skin in non-invasive or minimally invasive diagnostic approaches as an alternative to more invasive blood sampling. Skin is the largest human organ and contains rich analytical information related to a wide variety of medical conditions. Pressures on healthcare systems have resulted in a greater focus on enhanced efficacy of treatments and cost reduction. As such, there is a lot of research into new diagnostics that can address these challenges. Aoife intends her research to demonstrate innovative approaches to the analysis of skin that can be used for the early detection of various conditions including eczema flare-ups, liver failure, and skin cancer.

Alex von Kriegsheim (University College Dublin) SIRG

Alex’s research aims to develop new treatments to help prevent against bowel cancer in patients with colitis and Crohn’s disease. Both conditions lead to chronic inflammation of the gut, which can in turn increase the risk of bowel cancer. Alex hopes that his research can identify the ways in which this inflammation causes the growth of cancer cells and how the process can be halted through the release of important enzymes known as hydroxylases, which are blocked in chronically inflamed tissues.

Click Here for the list of Funded Projects

MikeCoey

A team of researchers from the AMBER centre at Trinity College Dublin (TCD) are behind the discovery of a new magnetic material they claim will revolutionise the ICT sector.

The material is made from an alloy of three metals, manganese, ruthenium and gallium (MRG), and is reportedly as strong as the strongest magnets available in the world today. However, it has the characteristic of not appearing magnetic at all to the untrained eye.

Known technically as ‘zero-moment half metal’, the material could potentially spawn a completely new line of materials research and open up numerous possibilities for electronics and information technology.

Led by Prof Michael Coey, the AMBER team said MRG has incredible potential and could lead to the possibility of limitless data storage, resulting in huge, superfast memory in personal computer devices. It could also eliminate the potential of external magnetic forces to ‘wipe’ computer data.

For 25 years, researchers worldwide have grappled with how to create a magnet such as MRG by trying to arrange numerous combinations of atoms in a way which was difficult without flouting the basic principles of physics.

Potential ‘big data revolution’

The AMBER research team claims to have solved this problem by using established industry-standard processes for making the electronic circuits on silicon chips, making it relatively easy for MRG to be adopted by computer and electronics companies.

Commenting on the discovery and its potential to lead a ‘big data revolution’, Coey said, “Magnetic materials are what make reading and storing data – either on personal devices or on large-scale servers in data centres – possible. Magnets are at the heart of every electronic device we use, from computers and laptops to tablets, smartphones and digital cameras.

“Given its unique insensitivity to magnetic fields, and the tenacity of its internal magnetic properties, MRG could now revolutionise how data is stored, which could have major implications for the future development of electronics, information technology and a host of other applications.”